Tuesday, July 11, 2017

Multifunctional Materials Integration: Cooler Chips Mean Smaller Devices

Assistant Professor Mona Zebarjadi, collaborating with Assistant Professor Stephen McDonnell, is developing an active electronic cooling device using two-dimensional (2-D) materials that could remove this roadblock. “The cooling we think we can get from these devices beats the best coolers on the market,” Zebarjadi said. “We are very excited about the possibilities.”

~From SEAS News:  

Zebarjadi has a joint appointment in the Charles L. Brown Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering, while McDonnell is a faculty member in the Department of Material Science and Engineering. Both are participants in UVA Engineering’s Multifunctional Materials Integration initiative, a $10 million interdisciplinary effort to develop new, advanced and complex materials and devices that – from their atoms all the way to their finished products, and systems of products – have a built-in level of energy efficiency and functionality that does not exist today.


Thursday, June 22, 2017

Dong and Wadley earn IJMR Best Paper of Year

UVA research scientist Liang Dong and University Professor Haydn Wadley have been awarded the 2017 Werner Koester Award for best paper. Each year the International Journal of Materials Research (IJMR) honours the "best paper" that appeared in the volume of IJMR of the preceding year.

The winning paper was entitled “Strong cellular lattices with nitro-carburized stainless steel hollow trusses.” Wadley's fellow co-authors and collaborators were Liang Dong (lead author, UVA), Arthur Heuer, Zhen Li, and Harold Kahn (Case Western Reserve University) and Vikram Deshpande of the Cambridge University. The award will be presented in Dresden, September 2017 at the German Society of Materials Science (DGM).

Liang Dong joined the Wadley from Wisconsin-Madison following a post-doctoral position with Roderic Lakes, with whom he did his PhD. Dong has been with the Wadley group since July of 2012 and his work focuses on the design, fabrication and characterization of cellular materials.

The Wadley group has a long history of leading in the development of topologically optimized cellular materials made from high performance materials such as carbon, silicon carbide and aluminum oxide fibers using state of the art polymers and light metallic alloys to interconnect them. Abundantly found in nature (bone, tree trunks, exoskeletons), cellular 2015 Robert W. Cahn Prize for the best paper of that year in the Journal of Materials Science.
materials have very high strength to weight ratios and offer many opportunities to make lighter structures for automobiles, planes, ships and space vehicles. In 2016, Haydn Wadley, along with coauthors Brad Richards, and Hengbei Zhao, were also award the

The current research on nitro-carburised stainless steel hollow trusses sought to use the very high strength (nitrogen and carbon hardened) surfaces of the tubes to resist buckling and resulted in significantly improved strength over their annealed lattice counterparts. Improvements in pitting corrosion and fatigue loading resistance were also expected by use of this process. Their recent findings suggests that nitro-carburized 304 stainless steel collinear lattices will be promising candidates for lightweight sandwich cores intended for elevated temperature and multifunctional applications.
Image: IJMR, Figure 2.

Sunday, May 21, 2017

Congratulations 2017 Grads of MSE, EP, and Engineering Science!

Final Exercises is a special time at UVA. We celebrate those who achieved today the culmination of years of hard work.  Congratulations to the Class of 2017.

View the Full Album:

uva mse graduation